skip to main content


Search for: All records

Creators/Authors contains: "Derdzinski, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. GW190521, the most massive binary black hole merger confidently detected by the LIGO-Virgo- KAGRA Collaboration, is the first gravitational-wave observation of an intermediate-mass black hole. The signal was followed approximately 34 days later by flare ZTF19abanrhr, detected in AGN J124942.3 þ 344929 by the Zwicky Transient Facility at the 78% spatial contour for GW190521’s sky localization. Using the GWTC-2.1 data release, we find that the association between GW190521 and flare ZTF19abanrhr as its electromagnetic counterpart is preferred over a random coincidence of the two transients with a log Bayes’ factor of 8.6, corresponding to an odds ratio of ∼5400∶1 for equal prior odds and ∼400∶1 assuming an astrophysical prior odds of 1=13. Given the association, the multimessenger signal allows for an estimation of the Hubble constant, finding H0 ¼ 102þ27 −25 km s−1 Mpc−1 when solely analyzing GW190521 and 79.2þ17.6 −9.6 km s−1 Mpc−1 assuming prior information from the binary neutron star merger GW170817, both consistent with the existing literature. 
    more » « less
    Free, publicly-accessible full text available December 26, 2024
  2. null (Ed.)
  3. Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024